
Private Set Intersection (PSI):
in the Cloud,

or using Circuits

Benny Pinkas

September 10, 2017

Private Set Intersection (PSI)

? ?

In this talk

• Computing PSI using linear-size circuits, via two-dimensional
Cuckoo hashing
• With Thomas Schneider, Christian Weinert, Udi Wieder.

• Have efficient implementations for all protocols

• A very detailed experimental analysis

• PSI of outsourced data in the cloud
• With Ben Riva

• Detailed cloud-based experiments

• A naïve solution:
• A has items x1,…,xn. B has items y1,…,yn.

• A and B agree on a “cryptographic hash function” H()

• B sends to A: H(y1),…, H(yn)

• A compares to H(x1),…, H(xn) and finds the intersection

• Does not protect B’s privacy if the inputs do not have
considerable entropy

A naïve PSI protocol

• Information sharing, e.g., intersection of threat
information or of suspect lists

• Matching, e.g., testing compatibility of different
properties (preferences, genomes…)

• Identifying mutual contacts

• Computing ad conversion rates

Applications of PSI

Application: Online Advertising

- Retailers show ads using,

e.g., Facebook or Google

- For online web stores, it is

easy to measure the

effectivity of ads

- For offline shops it is

harder

Online Real-WorldOnline

Existing PSI protocols

• Based on the commutativity of Diffie-Hellman [S80,
M86, HFH99, AES03]

• Based on blind-RSA [CT10]

• Based on generic MPC and circuits [HEK12,PSSZ15]

• Based on Bloom filters [DCW13]

• Based on Oblivious Transfer and hashing
[PSZ14,PSSZ15, KKRT16]

Main challenge
comparing two
sets of size n
requires n2

operations
 too many
crypto
operations

Thunder – when clouds intersect
(or, PSI of outsourced data)
With Ben Riva

Cloud storage services

Setting

• Users store huge encrypted data sets
in the cloud

• Want to run an MPC over their data

• MPC protocols are for users that have
their input in their possession

• Downloading the data before running
the MPC is costly

Motivation for running MPC in the cloud

• Why use a cloud service to run an
MPC for you?
• The data is already stored in the cloud

• Can achieve very low latency by utilizing
the elastic computing resources of the
cloud (namely, use hundreds of cores
and benefit from parallelism)

Requirements

• Clients encrypt their data before uploading it

• Do not know in advance with whom they will run MPC

• Afterwards, they only need to invest an effort that is
sublinear in the input size

Single vs. multiple cloud services
• Simple solution given non-colluding clouds:

• Each client sends encrypted data to one cloud service, key to another.
• The cloud service run an MPC between themselves.

• It is better not to depend on non-collusion between clouds
• Clients cannot verify that clouds do not collude
• It is expensive/complicated to setup trust relationships with multiple

clouds

• Therefore we assume that cloud services might collude. This is
equivalent to assuming that a single cloud service is used by all clients.

No client-cloud collusion
• We assume that clients do not

collude with the cloud.

• Otherwise, Alice might collude with
the cloud, and this will essentially be
a two-party computation between
Bob and Alice+cloud.

• The only known 2PC protocols with
sublinear communication are based
on FHE.

Clients upload data

Each client encrypts its
data with its own key

Alice and Bob wish to run a computation

(1) agree
on a token

(2) send token
to cloud

(3) run
computation

Bob and Carol wish to run a computation

(1) agree
on a token

(2) send token
to cloud

(3) run
computation

Bob and Carol wish to run a computation

Cloud still
cannot run a
computation
between Alice
and Carol

Why is this interesting?

• Need: the outsourced storage market is booming

• Novelty: current MPC techniques (except FHE) are inadequate for
the cloud setting

• Performance: we achieve latency similar to that of best PSI
protocols, by using mass parallelism. (Most clients can afford
renting, but not buying this computing power)

• PSI is the only problem we know how to to solve in this setting

Related work

• “On the fly MPC on the cloud via multi-key FHE” [LTV12]

• Protocols with client work of (n)
• Server aided MPC [KMR11,KMR12]

• Server assisted PSI [K12]

• MPC between three parties [BGW,CCD]

• Proxy re-encryption [AFGH06]
• Can convert an encryption to an encryption under a different key

• But cannot compare the two encryptions since they use different
randomness

Bilinear maps

• G1, G2, GT are groups of prime order q

• e: G1 G2  GT s.t.
• If g1,g2 are generators of G1, G2, respectively, then e(g1,g2) generates GT

• e(g1
a, g2

b) = e(g1, g2)ab

• We use a Type-III pairing: There is no homomorphism from G2 to GT

• The SXDH assumption [BGMM05,GrothSahai08]: Both G1 and G2 are
DDH hard groups.

The protocol

• Generate parameters for G1, G2,GT.
• g is a generator of G1

• A function H(): {0,1}*  G2.

• Upload by user Pi
• Picks a random key Ki [q]

• Encrypts each item x by computing (H(x))Ki G2

The protocol

• Generate parameters for G1, G2,GT.
• g is a generator of G1

• A function H(): {0,1}*  G2.

• Intersection of the data of Pi and Pj:
• Pi and Pj agree on a key K. Send gK/Ki, gK/Kj to the server, respectively.

• The server
• For each item (H(x))Ki uploaded by Pi, computes e(gK/Ki

,(H(x))Ki) = (H(x))K GT

• For each item (H(y))Kj uploaded by Pj, computes e(gK/Kj
,(H(y))Kj) = (H(y))K GT

• Check the intersection of the two computed sets

Security

• Security proof in the random oracle model based on SXDH
• Main property: values computed in the intersection of Pi and Pj

((H(x))K GT), cannot be compared with values computed in the
intersection of Pi and another party ((H(x))K’ GT).

• It is crucial that there is no homomorphism from G2 to GT

• Important (and hard) property: given tokens for Pi,Pj, and for Pj,Pk,
it is impossible to compute intersection of Pi,Pk.

Extensions

• Computing encryptions and pairings is highly parallelizable

• Can also preprocess the work of the intersection step, so that in
realtime compute exponentiations instead of pairings

• Computing the intersection of three (or more) parties
• Send tokens gR1/K1, gR2/K2 , g-(R1+R2)/K3

• The server computes (H(x))R1, (H(x))R2 , (H(x)) -(R1+R2) and looks for
triplets of items that multiply to 1

The Thunder prototype

• Implemented in Microsoft Azure (F16 Linux machines with 16 cores)

• Pairings were implemented using MIRACL 4.0
• Curve with 80 bit security (CP curve with K=2)

• Batching pairings: many pairings with the same element of G2

• Reduced run time by 50% to about 1ms / pairing.

Uploading data

Client encrypts its data

Uploads encrypted data to server

Data stored in MySQL database

Computing the intersection

Receives intersection token
from a pair of clients

Computing the intersection

worker machines (in the
cloud) get data and token

Computing the intersection

worker machines work…

Computing the intersection

worker machines return
result

Computing the intersection

server computes the final
intersection results (using
C++ unordered_sets API)

Results (msec)

Faster than best PSI
OT-based protocols
[PSSZ15,KKRT16]

Results (msec)

Total CPU time is
~same regardless
of # of workers.
Latency is
improved with
more workers.

Results (msec)

Most of the latency
• 10 workers: 88%-96%
• 50 workers: 70%-92%
• 100 workers: 60%-88%

Results

Cost of F16 machine is $0.80 / hour

Therefore, computing PSI on sets of
106 items costs
• $0.0286 with 10 workers
• $0.0469 with 100 workers

Computing PSI on sets of 107 items
costs between $0.286 to $0.299

Running experiments in the cloud

• Distributing data to workers and gathering the results is not simple

• Different ideas we had were not compatible with the existing API

• AWS does not guarantee which machine will run your program
• Therefore used Azure

• Network congestion depends on other users and on time of day

• It’s expensive

Linear size circuit-based PSI via
two-dimensional Cuckoo hashing
With Thomas Schneider, Christian Weinert, Udi Wieder

Existing PSI protocols

• Based on the commutativity of Diffie-Hellman [S80,
M86, HFH99, AES03]

• Based on blind-RSA [CT10]

• Based on generic MPC and circuits [HEK12,PSSZ15]

• Based on Bloom filters [DCW13]

• Based on Oblivious Transfer and hashing
[PSZ14,PSSZ15, KKRT16]

Main challenge
comparing two
sets of size n
requires n2

operations
 too many
crypto
operations

Recent constructions [PSZ1,PSSZ15,KKRT16]

• PSI is “equivalent” to oblivious transfer

• Realized that oblivious transfer extension (which is very fast)
can enable very efficient PSI

• Used different hashing ideas to dramatically reduce the
overhead of PSI

Performance Classification [PSZ]

DH-FFC'86

Blind-RSA'10

DH-ECC'86

GMW'12
Yao'12

Opt.GMW

Naïve

OT+Hash'15

Circuit-Based:

- high run-time &

communication,

but easily extensible

to arbitrary functions

OT-Based: good

communication and

run-time
1 10 100 1,000

Run-time (s)

C
o

m
m

u
n

ic
a
ti

o
n

 (
M

B
y
te

s
)

10

100

1,000

10,000

PK-Based:

- high run-time

+ best communication

- PSI on n = 218 elements of s=32-bit length for 128-bit security on Gbit LAN

Motivation for using circuits

• PSI is a specific case of secure two-party computation:

Two parties with private inputs want to compute a function
of their inputs while leaking no other information

• There are generic protocols (“MPC”) for securely computing
any function, as long as it is expressed as a binary circuit

Motivation for using circuits

Why use a circuit-based generic protocol for computing PSI?

• Adaptability
• Instead of hiring a crypto expert, hire an undergrad

• Existing code base

• Existing applications compute functions over the results of
PSI
• E.g., computing the sum of revenues from ad views

• There are generic protocols for securely computing any function
expressed as a Binary circuit
• GMW, Yao,…

• Parties do not learn anything but the required output

• The overhead depends on the size of the circuit

• A naïve circuit for PSI uses n2 comparisons of words

• Can we do better?

A circuit based protocol

A circuit comparing two s-bit values

Xs Ys Xs-1 Ys-1 X1 Y1

… … ...

… … ...

 Free XORs

 s-1 gates

Comparing two items is efficient

Our goal is to arrange two sets of n items so
that the intersection can be computed with

as few comparisons as posible

• An algorithm that sorts values using a fixed sequence of
comparisons

• Can be thought of as a network of wires and comparator
modules

Sorting networks

• A PSI circuit that has three steps

• Sort: merge two sorted lists using a bitonic merging network
[Bat68]. Uses nlog(2n) comparisons.

A circuit based PSI protocol [HEK12]

• A circuit that has three steps
• Sort: Merge two sorted lists using a bitonic merging network

[Bat68]. Computes the sorted union using nlog(2n) comparisons.

• Compare: Compare adjacent items. Uses 2n equality checks.

• Shuffle: Randomly shuffle results using a Waxman permutation
network [W68], using nlog(n) swappings.

• Overall Computes O(nlogn) comparisons.
Uses s(3nlogn + 4n) AND gates. (s is input length)

A circuit based PSI protocol [HEK12]

The Algorithmic Challenge

• Goal: Find the smallest circuit for computing PSI
• Alice and Bob can prepare their inputs

• Circuit must not depend on data!

• Any symmetric function of the intersection could be added
on top
• The size of the intersection, or whether size is greater than some

threshold, potentially after adding noise to ensure differential privacy

• Sum of values associated with the items in the intersection

• Minimize # of comparisons (and length of items)

Contributions

• O(n) circuit-based PSI
1. A construction with O(n) (*) provable asymptotic overhead

(*) ω(n) if failure probability should be negligible

2. A construction with O(n) experimentally verified overhead, with
very small constants

• Implementation and experiments
• Run time is (surprisingly) better than that of a former

O(n logn / loglogn) construction

• New analysis of Cuckoo hashing

• Suppose each party uses a hash function H(), (known to both
parties) to hash his/her n items to n bins.
• Then obviously if Alice and Bob have the same item, both of them

map it to the same bin

• Need only compare matching bins

• The problem
• Some bins have more items than others

• Must hide how many items were mapped

to each bin

Hashing

• Solution
• Pad each bin with dummy items

• so that all bins are of the same size as the most populated bin

• Mapping n items to n bins
• The expected size of a bin is O(1)

• The maximum size of a bin is whp O(logn/loglogn)

• The resulting size of a circuit is …

Hashing

Cuckoo Hashing with a Stash [PR01], [KMW08]
• Tables T1, T2 and stash S

• Hash functions h1, h2

• Invariant: Store x in T1[h1(x)] or in T2[h2(x)] or in S
T1 T2

X

• Fact: If size of table > 1 + 𝜖 𝑛 then it is possible
to store n items and keep the invariant

• Except with probability 𝑛−(𝑠+1)

S
• Slightly more than 2n table entries
• Each of size 1

Handling the Error Probability

• A stash of size s fails with probability O(n-(s+1))

• In PSI this results in a (minor?) privacy/accuracy breach

• What should be the failure probability?

Handling the Error Probability

• A stash of size s fails with probability O(n-(s+1))

• In PSI this results in a (minor?) privacy/accuracy breach

• What should be the failure probability?

• Smaller than 2-Stat, e.g. 2-40 ?

• s = O(1) (but what is the exact size?)

• Negligible in n ?

• s = ω(1)

Cuckoo Hashing – can it help?

• What if each party stores its items using CH
• Can we get O(n) comparisons?

• No. Alice may store x in T2 while Bob in T1

T1 T2

X

x

T1 T2

X

x

[FNP04], [PSSZ15]

• Alice places its items in both tables. Bob uses Cuckoo hashing.
• In Alice’s tables the buckets are of size O(log n/ loglog n)

• Total of O(n log n / loglogn) comparisons + O(n) for Bob’s stash

• “Permutation based hashing” can be used to store only short values
T1 T2

X

x

T1 T2

X

xx S

The New Constructions

An Asymptotic Solution

Mirror based PSI:
• 8 tables, of total size 8(1+)n
• Organized as 4 columns of 2 tables
• Bob maps each of his items to one table

in each column (using simple CH)
• Alice maps each of her items to both

tables in exactly one column

• Now build a circuit which compares each
entry in Bob’s tables to the
corresponding entry in Alice’s tables

X

X

X

X

X

X

An Asymptotic Solution

Mirror based PSI:
• 8 tables, of total size 8(1+)n
• Organized as 4 columns of 2 tables
• Bob maps each of his items to one table

in each column (using simple CH)
• Alice maps each of her items to both

tables in exactly one column

• Now build a circuit which compares each
entry in Bob’s tables to the
corresponding entry in Alice’s tables

X

X

X

X

X

X

Circuit size:
• 8(1+)n
• Plus a constant (or
ω(1)) size stash per
each table…

An Asymptotic Solution

Mirror based PSI:
• 8 tables, of total size 8(1+)n
• Organized as 4 columns of 2 tables
• Bob maps each of his items to one table

in each column (using simple CH)
• Alice maps each of her items to both

tables in exactly one column

• Now build a circuit which compares each
entry in Bob’s tables to the
corresponding entry in Alice’s tables

X

X

X

X

X

X

Circuit size:
• 8(1+)n
• Plus a constant (or
ω(1)) size stash per
each table…

• Analysis is based on known
properties of Cuckoo hashing ☺

• But the constants are not small 

Why does the stash size matter?

• All items in the main tables are compared using O(n) comparisons
(namely, 8n comparisons)
• Permutation based hashing [PSSZ16] => compared values are short

• Each item in the stash must be compared with n items
• With s items in each stash, and 4 CHs, and two parties, we end up adding 8sn

comparisons.

An Experimental Solution – 2D Cuckoo

• Alice and Bob each hold 4 tables, and the
same 4 hash functions

T1 T2

X

x

x

T3 T4

X

x

x

An Experimental Solution – 2D Cuckoo

• Alice and Bob each hold 4 tables, and the
same 4 hash functions

• Alice: Places item in (T1 and T2) or (T3 and T4)

• Bob: Places item in (T1 and T3) or (T2 and T4)

(the actual protocol is a bit different)

Possible cases

An Experimental Solution – 2D Cuckoo

• Like a quorum system

• If both parties have the same item then there is
exactly one location in which both store it

• The circuit simply compares the item that Alice
places in a bin to the item that Bob places in the
same bin

• Question: Can this be done? how big should the
tables be so that n items could be placed w.h.p ?

• Invariant: Item in (T1 and T2) or (T3 and T4)

• Theorem: n items could be placed maintaining
the invariant w.h.p.
if each table has > 2n buckets of size 1.

• Total of 8n buckets and 8n comparisons

• The stash adds 2sn comparisons (there are
many protocol variants; stash size is the main
differentiator)

T1 T2

X

x

x

T3 T4

X

x

x

2D cuckoo hashing  O(n) protocol

• Invariant: Item in (T1 and T2) or (T3 and T4)

• Theorem: n items could be placed maintaining
the invariant w.h.p.
if each table has > 2n buckets of size 1.

• THM was proved using a new proof technique!

• The new proof can also prove known theorems
about CH, as well as more general constructions

• BUT, we don’t have (yet) an analysis for the size
of the stash

T1 T2

X

x

x

T3 T4

X

x

x

2D cuckoo hashing  O(n) protocol

An even better 2D Cuckoo variant

• Instead of 4 tables of size (2+)n, where each entry holds one item…

• Use 4 tables of size (1+)n, where each entry can store two items

• In simple CH it was shown (first experimentally and then theoretically)
that storing two items in a bin reduces the overall size of the tables

• We don’t know how to prove this for 2D CH
• But we can check experimentally

Using Probabilistic Data Structures in Crypto

• E.g., hash tables, dictionaries, etc.

• We want the failure probability to be small (2-40?, negligible in n?)

• Different levels of assurance
1. There is an exact analysis of the failure probability (e.g., for collisions in a

hash table or Bloom filter)

2. There is an asymptotic analysis of the failure probability (e.g., for simple
Cuckoo hashing)

3. No analysis of the failure probability (e.g., 2D Cuckoo hashing with 2 items
in each bin)

Using Probabilistic Data Structures in Crypto

• E.g., hash tables, dictionaries, etc.

• We want the failure probability to be small (2-40?, negligible in n?)

• Different levels of assurance
1. There is an exact analysis of the failure probability (e.g., for collisions in a

hash table or Bloom filter)

2. There is an asymptotic analysis of the failure probability (e.g., for simple
Cuckoo hashing)

3. No analysis of the failure probability (e.g., 2D Cuckoo hashing with 2 items
in each bin)

Using Probabilistic Data Structures in Crypto

• E.g., hash tables, dictionaries, etc.

• We want the failure probability to be small (2-40?, negligible in n?)

• Different levels of assurance
1. There is an exact analysis of the failure probability (e.g., for collisions in a

hash table or Bloom filter)

2. There is an asymptotic analysis of the failure probability (e.g., for simple
Cuckoo hashing)

3. No analysis of the failure probability (e.g., 2D Cuckoo hashing with 2 items
in each bin)

Must use experiments to find exact parameters

Experiments
• How to verify a failure probability of 2-40?

• We ran 240 experiments of hashing n items to 4 tables, where each
table has 1.2n entries of size 2
• We used n = 26, 28, 210, 212

• The # of times that a stash was needed (i.e., the failure probability) behaved
as n-3. (Agreeing with a sketch of a theoretical analysis)

• Used about 2,230,000 core hours!
• Possibly the largest hashing experiment per date?

• For n=212 the stash was needed only once (in experiment # 239.15)
• Giving a 99.9% confidence level that p ≤ 2-37 for n=212.

• Therefore for 213 ≤ n we have 99.9% confidence that p ≤ 2-40

Circuit size

Construction Circuit size (AND gates) Normalized
size

Sorting network [HEKM12] 1,408,238,538 O(nlogn) 2.04

Cuckoo + simple hashing [PSSZ15] 688,258,388 O(nlog/loglogn) 1

2D Cuckoo with separate stashes 313,183,300 O(n) 0.45

2D Cuckoo with a combined stash 215,665,732 O(n) 0.31

Circuit size (# of AND gates) for sets of n=220 elements of
length 32 bit each

Evaluation – run time

LAN n=216 LAN n=220 WAN n=216 WAN n=220

DH/ECC PSI-CA [DGT12] 51,469 819,820 52,178 831,108

[PSSZ15] 15,322 177,245

2D Cuckoo separate stashes 7,655 90,078 81,995 1,113,169

2D Cuckoo combined stash 6,046 64,258 63,369 761,318

- Run times (in msec) for computing the size of the intersection
- ECC PSI-CA is a Diffie-Hellman based protocol for computing size of the
intersection

Evaluation

LAN n=216 LAN n=220 WAN n=216 WAN n=220

DH/ECC PSI-CA [DGT12] 8.5 51,469 12.8 819,820 52,178 831,108

[PSSZ15] 2.53 15,322 177,245

2D Cuckoo separate stashes 1.26 7,655 1.4 90,078 81,995 1,113,169

2D Cuckoo combined stash 1 6,046 1 64,258 63,369 761,318

Over a LAN, the new two-dimensional hashing protocols perform best

Contributions of the new protocol

• Asymptotically better: O(n) vs. O(nlogn/loglogn)

• Runs faster

• New analysis techniques for Cuckoo hashing

• Simplifies the usage of PSI

Conclusions

• PSI in an important and interesting primitive

• Research benefits from ideas from other subfields

• Most previous work was on simple two-party PSI

• New results:
• Generic computation over PSI

• PSI over outsourced data

• Multi-party PSI

