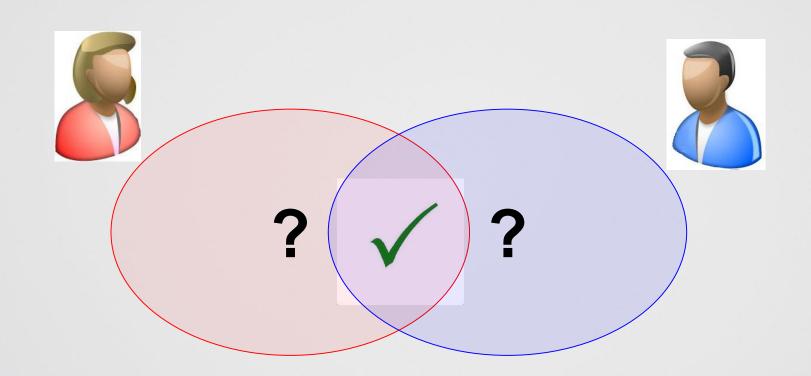
Private Set Intersection (PSI): in the Cloud, or using Circuits

> Benny Pinkas September 10, 2017

Center for Research in Applied

Private Set Intersection (PSI)



In this talk

- Computing PSI using linear-size circuits, via two-dimensional Cuckoo hashing
 - With Thomas Schneider, Christian Weinert, Udi Wieder.
 - Have efficient implementations for all protocols
 - A very detailed experimental analysis

- PSI of outsourced data in the cloud
 - With Ben Riva
 - Detailed cloud-based experiments

A naïve PSI protocol

- A naïve solution:
 - A has items x₁,...,x_n. B has items y₁,...,y_n.
 - A and B agree on a "cryptographic hash function" H()
 - B sends to A: H(y₁),..., H(y_n)
 - A compares to $H(x_1), ..., H(x_n)$ and finds the intersection
- Does not protect B's privacy if the inputs do not have considerable entropy

Applications of PSI

- Information sharing, e.g., intersection of threat information or of suspect lists
- Matching, e.g., testing compatibility of different properties (preferences, genomes...)
- Identifying mutual contacts
- Computing ad conversion rates

Application: Online Advertising

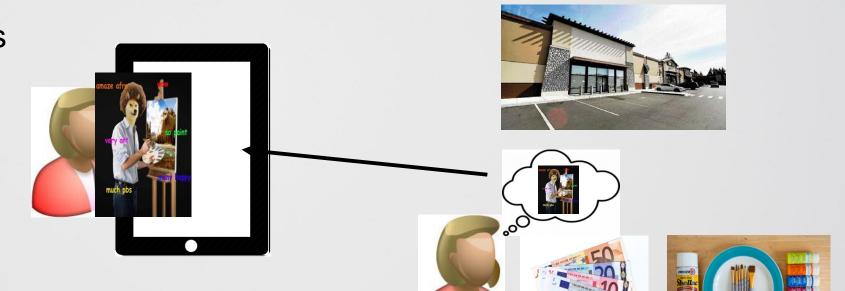
- Retailers show ads using, e.g., Facebook or Google

- For online web stores, it is easy to measure the effectivity of ads

- For offline shops it is harder

Online

Real-World



Existing PSI protocols

- Based on the commutativity of Diffie-Hellman [S80, M86, HFH99, AES03]
- Based on blind-RSA [CT10]
- Based on generic MPC and circuits [HEK12, PSSZ15]
- Based on Bloom filters [DCW13]
- Based on Oblivious Transfer and hashing [PSZ14,PSSZ15, KKRT16]

Main challenge

comparing two
sets of size n
requires n²
operations
⇒ too many
crypto
operations

Thunder – when clouds intersect (or, PSI of outsourced data)

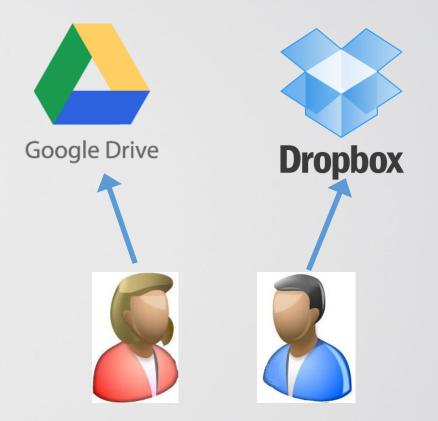
With Ben Riva

Cloud storage services

Setting

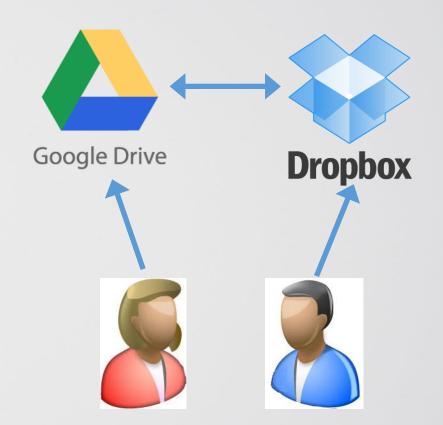
- Users store huge *encrypted* data sets in the cloud
- Want to run an MPC over their data

- MPC protocols are for users that have their input in their possession
- Downloading the data before running the MPC is costly



Motivation for running MPC in the cloud

- Why use a cloud service to run an MPC for you?
 - The data is already stored in the cloud
 - Can achieve very low latency by utilizing the elastic computing resources of the cloud (namely, use hundreds of cores and benefit from parallelism)



Requirements

- Clients encrypt their data before uploading it
- Do not know in advance with whom they will run MPC

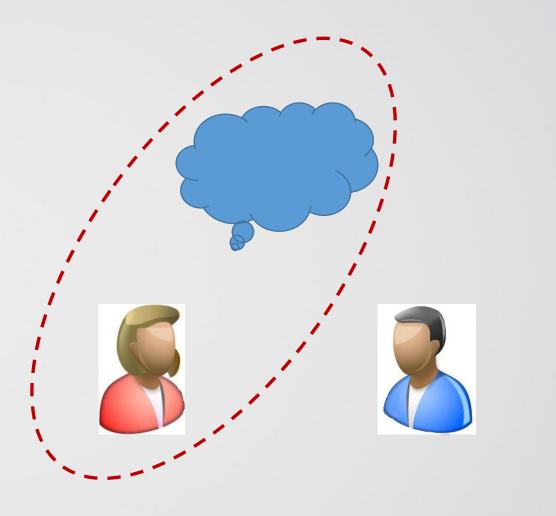
 Afterwards, they only need to invest an effort that is sublinear in the input size

Single vs. multiple cloud services

- Simple solution given non-colluding clouds:
 - Each client sends encrypted data to one cloud service, key to another.
 - The cloud service run an MPC between themselves.
- It is better not to depend on non-collusion between clouds
 - Clients cannot verify that clouds do not collude
 - It is expensive/complicated to setup trust relationships with multiple clouds
- Therefore we assume that cloud services might collude. This is
 equivalent to assuming that a single cloud service is used by all clients.

No client-cloud collusion

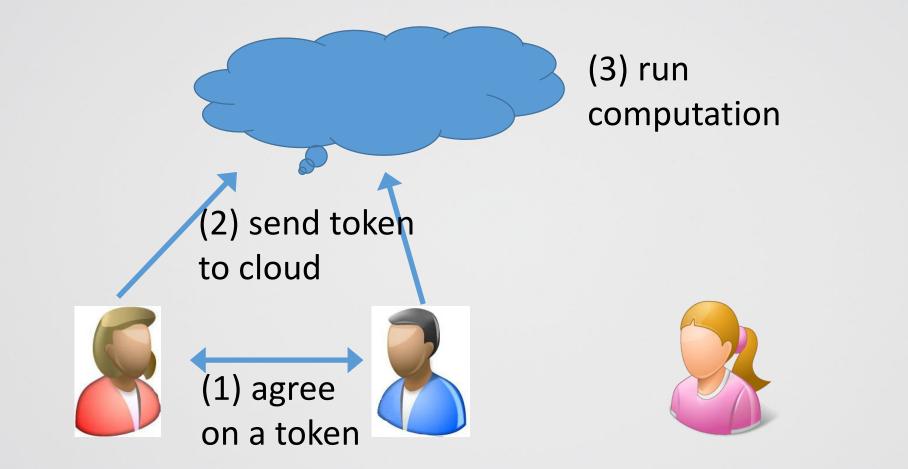
- We assume that clients do not collude with the cloud.
- Otherwise, Alice might collude with the cloud, and this will essentially be a two-party computation between Bob and Alice+cloud.
- The only known 2PC protocols with sublinear communication are based on FHE.



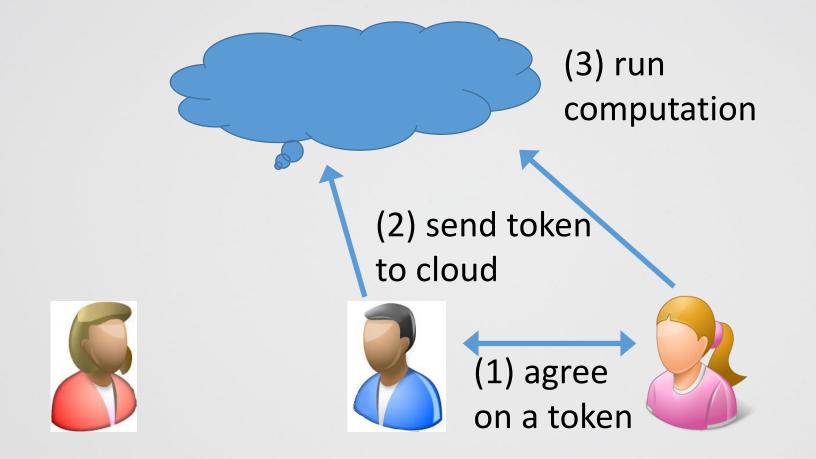
Clients upload data

Each client encrypts its data with its own key

Alice and Bob wish to run a computation

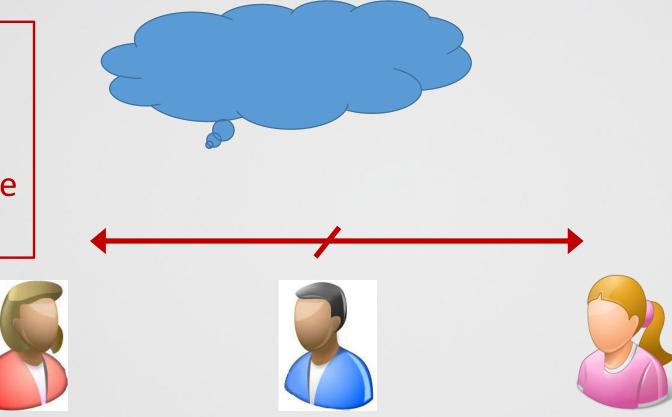


Bob and Carol wish to run a computation



Bob and Carol wish to run a computation

Cloud still cannot run a computation between Alice and Carol



Why is this interesting?

- Need: the outsourced storage market is booming
- Novelty: current MPC techniques (except FHE) are inadequate for the cloud setting
- Performance: we achieve latency similar to that of best PSI protocols, by using mass parallelism. (Most clients can afford renting, but not <u>buying</u> this computing power)
- PSI is the only problem we know how to to solve in this setting

Related work

- "On the fly MPC on the cloud via multi-key FHE" [LTV12]
- Protocols with client work of $\Theta(n)$
 - Server aided MPC [KMR11,KMR12]
 - Server assisted PSI [K12]
 - MPC between three parties [BGW,CCD]
- Proxy re-encryption [AFGH06]
 - Can convert an encryption to an encryption under a different key
 - But cannot compare the two encryptions since they use different randomness

Bilinear maps

- G₁, G₂, G_T are groups of prime order q
- e: $G_1 \times G_2 \rightarrow G_T$ s.t.
 - If g_1, g_2 are generators of G_1 , G_2 , respectively, then $e(g_1, g_2)$ generates G_T
 - $e(g_1^{a}, g_2^{b}) = e(g_1, g_2)^{ab}$
- We use a Type-III pairing: There is no homomorphism from G_2 to G_T
- The SXDH assumption [BGMM05,GrothSahai08]: Both G₁ and G₂ are DDH hard groups.

The protocol

- Generate **parameters** for G₁, G₂, G_T.
 - g is a generator of G₁
 - A function H(): $\{0,1\}^* \rightarrow G_2$.
- Upload by user Pi
 - Picks a random key $Ki \in [q]$
 - Encrypts each item x by computing $(H(x))^{Ki} \in G_2$

The protocol

- Generate **parameters** for G₁, G₂, G_T.
 - g is a generator of G₁
 - A function H(): $\{0,1\}^* \rightarrow G_2$.
- Intersection of the data of Pi and Pj:
 - Pi and Pj agree on a key K. Send $g^{K/Ki}$, $g^{K/Kj}$ to the server, respectively.
- The server
 - For each item $(H(x))^{Ki}$ uploaded by Pi, computes $e(g^{K/Ki}(H(x))^{Ki}) = (H(x))^{K} \in G_T$
 - For each item $(H(y))^{Kj}$ uploaded by Pj, computes $e(g^{K/Kj}(H(y))^{Kj}) = (H(y))^{K} \in G_T$
 - Check the intersection of the two computed sets

Security

- Security proof in the random oracle model based on SXDH
 - Main property: values computed in the intersection of Pi and Pj ((H(x))^K ∈ G_T), cannot be compared with values computed in the intersection of Pi and another party ((H(x))^{K'} ∈ G_T).
 - It is crucial that there is no homomorphism from G₂ to G_T
 - Important (and hard) property: given tokens for P_i, P_j, and for P_j, P_k, it is impossible to compute intersection of P_i, P_k.

Extensions

- Computing encryptions and pairings is highly parallelizable
- Can also preprocess the work of the intersection step, so that in realtime compute exponentiations instead of pairings
- Computing the intersection of three (or more) parties
 - Send tokens g^{R1/K1}, g^{R2/K2}, g^{-(R1+R2)/K3}
 - The server computes (H(x))^{R1}, (H(x))^{R2}, (H(x)) -(R1+R2) and looks for triplets of items that multiply to 1

The Thunder prototype

- Implemented in Microsoft Azure (F16 Linux machines with 16 cores)
- Pairings were implemented using MIRACL 4.0
 - Curve with 80 bit security (CP curve with K=2)
- Batching pairings: many pairings with the same element of G₂
 - Reduced run time by 50% to about 1ms / pairing.

Uploading data

Data stored in MySQL database

Uploads encrypted data to server

Client encrypts its data

Receives intersection token from a pair of clients

worker machines (in the cloud) get data and token

worker machines work...

worker machines return result

server computes the final
intersection results (using
C++ unordered_sets API)

Results (msec)

Data	# of	Down	Compute	Upload	Total	CPU
size	Wor	-load				hours
	kers					
1 M		49	11282	1501	12833	0.036
5M	10	121	61325	2943	64391	0.179
10M		330	125982	4854	131168	0.364
1 M		40	2367	972	3381	0.047
5M	50	134	11247	1587	12700	0.176
10M		255	24844	1972	27072	0.376
1 M		35	1278	800	2115	0.059
5M	100	75	5721	1225	7022	0.195
10M		109	11352	1474	12936	0.359

Faster than best PSI OT-based protocols [PSSZ15,KKRT16]

Results (msec)

Data	# of	Down	Compute	Upload	Total	CPU
size	Wor	-load				hours
	kers					
1 M		49	11282	1501	12833	0.036
5M	10	121	61325	2943	64391	0.179
10M		330	125982	4854	131168	0.364
1 M		40	2367	972	3381	0.047
5M	50	134	11247	1587	12700	0.176
10 M		255	24844	1972	27072	0.376
1 M		35	1278	800	2115	0.059
5M	100	75	5721	1225	7022	0.195
10 M		109	11352	1474	12936	0.359

Total CPU time is
~same regardless
of # of workers.
Latency is
improved with
more workers.

Results (msec)

Most of the latency

- 10 workers: 88%-96%
- 50 workers: 70%-92%
- 100 workers: 60%-88%

Data	# of	Down	Compute	Upload	Total	CPU
size	Wor	-load				hours
	kers					
1M		49	11282	1501	12833	0.036
5M	10	121	61325	2943	64391	0.179
10M		330	125982	4854	131168	0.364
1M		40	2367	972	3381	0.047
5M	50	134	11247	1587	12700	0.176
10M		255	24844	1972	27072	0.376
1M		35	1278	800	2115	0.059
5M	100	75	5721	1225	7022	0.195
10M		109	11352	1474	12936	0.359

Results

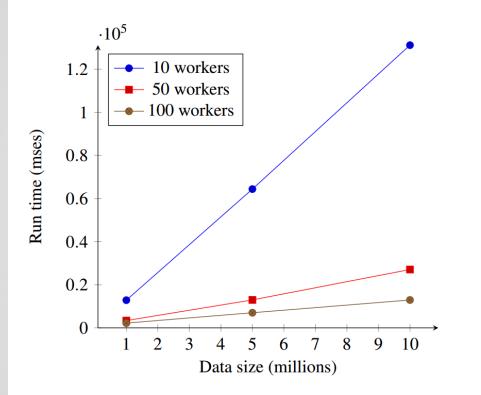


Figure 3: Run times for different data sizes.

Cost of F16 machine is \$0.80 / hour

Therefore, computing PSI on sets of 10⁶ items costs

- \$0.0286 with 10 workers
- \$0.0469 with 100 workers

Computing PSI on sets of 10⁷ items costs between \$0.286 to \$0.299

Running experiments in the cloud

- Distributing data to workers and gathering the results is not simple
 Different ideas we had were not compatible with the existing API
- AWS does not guarantee which machine will run your program
 - Therefore used Azure
- Network congestion depends on other users and on time of day
- It's expensive

Linear size **circuit-based** PSI via two-dimensional Cuckoo hashing

With Thomas Schneider, Christian Weinert, Udi Wieder

Existing PSI protocols

- Based on the commutativity of Diffie-Hellman [S80, M86, HFH99, AES03]
- Based on blind-RSA [CT10]
- Based on generic MPC and circuits [HEK12, PSSZ15]
- Based on Bloom filters [DCW13]
- Based on Oblivious Transfer and hashing [PSZ14,PSSZ15, KKRT16]

Main challenge

comparing two
sets of size n
requires n²
operations
⇒ too many
crypto
operations

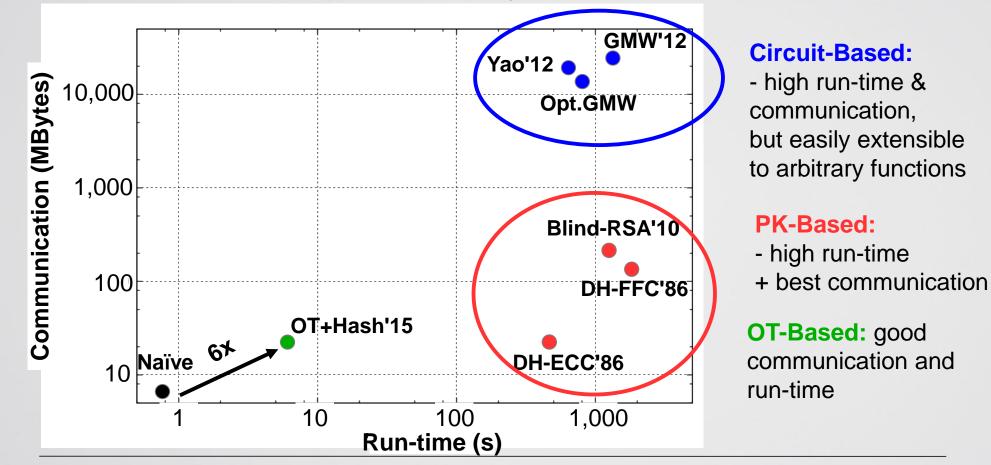
Recent constructions [PSZ1, PSSZ15, KKRT16]

- PSI is "equivalent" to oblivious transfer
- Realized that oblivious transfer extension (which is very fast) can enable very efficient PSI

Used different hashing ideas to dramatically reduce the overhead of PSI

Performance Classification [PSZ]

- PSI on $n = 2^{18}$ elements of s=32-bit length for 128-bit security on Gbit LAN



Motivation for using circuits

• PSI is a specific case of secure two-party computation:

Two parties with private inputs want to compute a function of their inputs while leaking no other information

 There are generic protocols ("MPC") for securely computing any function, as long as it is expressed as a binary circuit

Motivation for using circuits

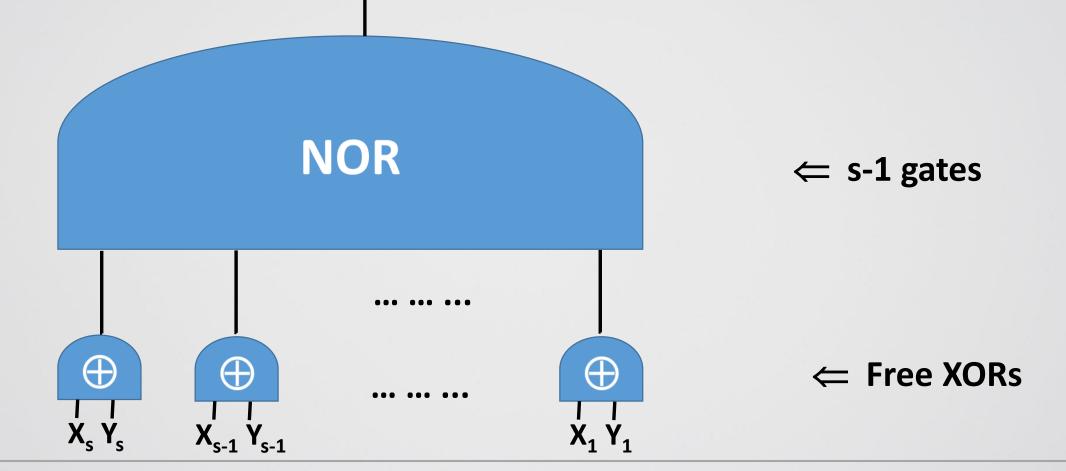
Why use a circuit-based generic protocol for computing PSI?

- Adaptability
 - Instead of hiring a crypto expert, hire an undergrad
- Existing code base
- Existing applications compute functions over the results of PSI
 - E.g., computing the sum of revenues from ad views

A circuit based protocol

- There are generic protocols for securely computing any function expressed as a Binary circuit
 - GMW, Yao,...
 - Parties do not learn anything but the required output
 - The overhead depends on the size of the circuit
- A naïve circuit for PSI uses n² comparisons of words
- Can we do better?

A circuit comparing two s-bit values

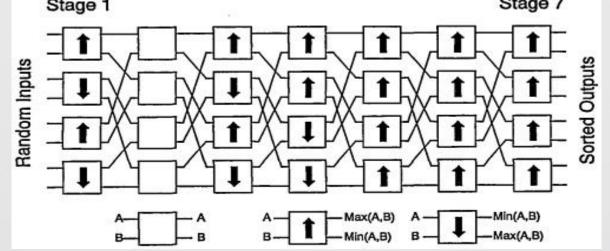


Comparing two items is efficient

Our goal is to arrange two sets of n items so that the intersection can be computed with as few comparisons as posible

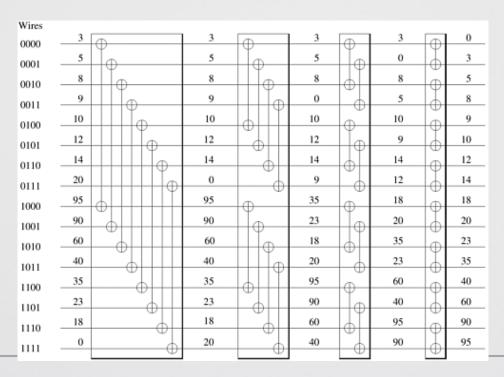
Sorting networks

- An algorithm that sorts values using a fixed sequence of comparisons
- Can be thought of as a network of wires and comparator modules
 Stage 1
 Stage 7



A circuit based PSI protocol [HEK12]

- A PSI circuit that has three steps
 - Sort: merge two sorted lists using a bitonic merging network [Bat68]. Uses nlog(2n) comparisons.



A circuit based PSI protocol [HEK12]

- A circuit that has three steps
 - Sort: Merge two sorted lists using a bitonic merging network [Bat68]. Computes the sorted union using nlog(2n) comparisons.
 - Compare: Compare adjacent items. Uses 2n equality checks.
 - Shuffle: Randomly shuffle results using a Waxman permutation network [W68], using ~nlog(n) swappings.
 - Overall Computes O(nlogn) comparisons.
 Uses s.(3nlogn + 4n) AND gates. (s is input length)

The Algorithmic Challenge

- Goal: Find the smallest circuit for computing PSI
 - Alice and Bob can prepare their inputs
 - Circuit must not depend on data!
- Any symmetric function of the intersection could be added on top
 - The size of the intersection, or whether size is greater than some threshold, potentially after adding noise to ensure differential privacy
 - Sum of values associated with the items in the intersection
- Minimize # of comparisons (and length of items)

Contributions

- O(n) circuit-based PSI
 - 1. A construction with $O(n)^{(*)}$ provable asymptotic overhead ^(*) $\omega(n)$ if failure probability should be negligible
 - 2. A construction with O(n) **experimentally verified** overhead, with very small constants
- Implementation and experiments
 - Run time is (surprisingly) better than that of a former O(n logn / loglogn) construction
- New analysis of Cuckoo hashing

Hashing

- Suppose each party uses a hash function H(), (known to both parties) to hash his/her n items to n bins.
 - Then obviously if Alice and Bob have the same item, both of them map it to the same bin
 - Need only compare matching bins
- The problem
 - Some bins have more items than others
 - Must hide how many items were mapped to each bin



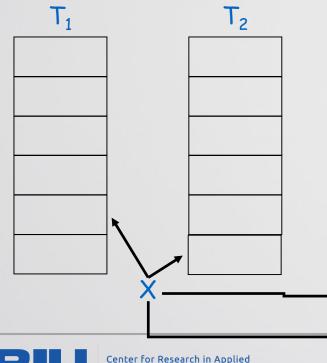
Hashing

- Solution
 - Pad each bin with dummy items
 - so that all bins are of the same size as the most populated bin
- Mapping n items to n bins
 - The expected size of a bin is O(1)
 - The maximum size of a bin is whp O(logn/loglogn)
 - The resulting size of a circuit is ...

Cuckoo Hashing with a Stash [PR01], [KMW08]

- Tables $T_1,\,T_2$ and stash S
- Hash functions h_1 , h_2
- Invariant: Store x in $T_1[h_1(x)]$ or in $T_2[h_2(x)]$ or in S

S



- Fact: If size of table > $(1 + \epsilon)n$ then it is possible to store n items and keep the invariant
- Except with probability $n^{-(s+1)}$
 - Slightly more than 2n table entries
 - Each of size 1

Handling the Error Probability

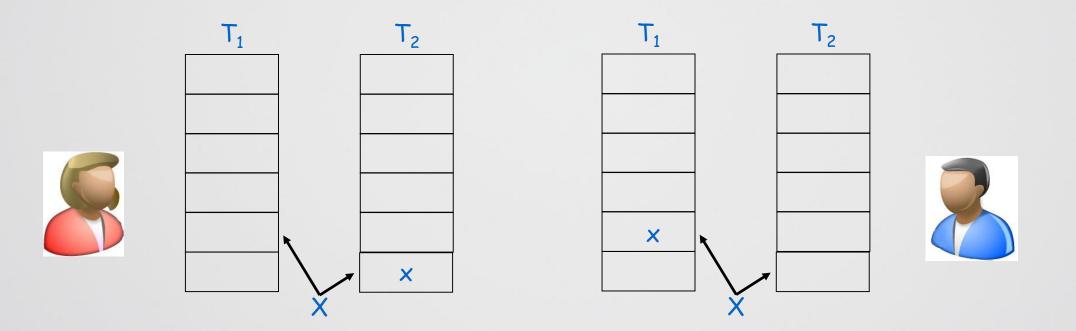
- A stash of size s fails with probability O(n^{-(s+1)})
- In PSI this results in a (minor?) privacy/accuracy breach
- What should be the failure probability?

Handling the Error Probability

- A stash of size s fails with probability O(n-(s+1))
- In PSI this results in a (minor?) privacy/accuracy breach
- What should be the failure probability?
- Smaller than 2^{-Stat}, e.g. 2⁻⁴⁰?
 - s = O(1) (but what is the exact size?)
- Negligible in n ?
 - s = $\omega(1)$

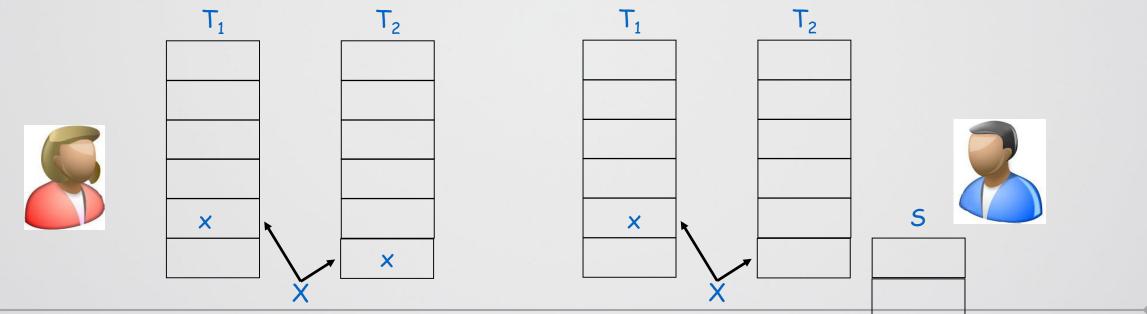
Cuckoo Hashing – can it help?

- What if each party stores its items using CH
 - Can we get O(n) comparisons?
 - No. Alice may store x in T₂ while Bob in T₁



[FNP04], [PSSZ15]

- Alice places its items in **both** tables. Bob uses Cuckoo hashing.
 - In Alice's tables the buckets are of size O(log n/ loglog n)
 - Total of O(n log n / loglogn) comparisons + O(n) for Bob's stash
 - "Permutation based hashing" can be used to store only short values



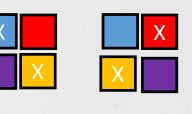
The New Constructions

Center for Research in Applied Cryptography and Cyber Security

An Asymptotic Solution

Mirror based PSI:

- 8 tables, of total size $8(1+\epsilon)n$
- Organized as 4 columns of 2 tables
- Bob maps each of his items to one table in each column (using simple CH)
- Alice maps each of her items to both tables in exactly one column
- Now build a circuit which compares each entry in Bob's tables to the corresponding entry in Alice's tables



Х	
Χ	

An Asymptotic Solution

Mirror based PSI:

- 8 tables, of total size $8(1+\epsilon)n$
- Organized as 4 columns of 2 tables
- Bob maps each of his items to one table in each column (using simple CH)
- Alice maps each of her items to both tables in exactly one column
- Now build a circuit which compares each entry in Bob's tables to the corresponding entry in Alice's tables

Circuit size:

- 8(1+ɛ)n
- Plus a constant (or ω(1)) size stash per each table...

An Asymptotic Solution

Mirror based PSI:

- 8 tables, of total size 8(1+ε)n
- Organized as 4 columns of 2 tables
- Bob maps each of his items to one table in each column (using simple CH)
- Alice maps each of her items to both tables in exactly one column
- Now build a circuit which compares each entry in Bob's tables to the corresponding entry in Alice's tables

Circuit size:

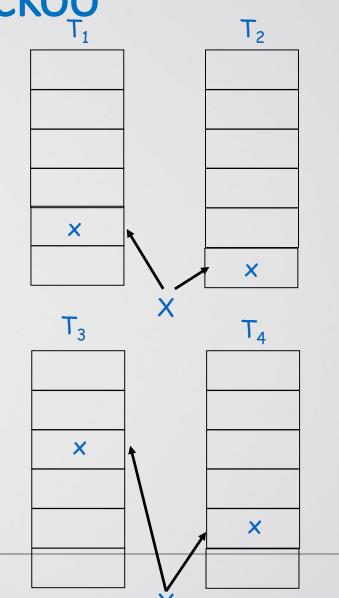
- 8(1+ɛ)n
- Plus a constant (or ω(1)) size stash per each table...
- Analysis is based on known properties of Cuckoo hashing [©]
- But the constants are <u>not</u> small 😣

Why does the stash size matter?

- All items in the main tables are compared using O(n) comparisons (namely, 8n comparisons)
 - Permutation based hashing [PSSZ16] => compared values are short
- Each item in the stash must be compared with n items
 - With s items in each stash, and 4 CHs, and two parties, we end up adding 8sn comparisons.

An Experimental Solution – 2D Cuckoo

• Alice and Bob each hold 4 tables, and the same 4 hash functions



Center for Research in Applied Cryptography and Cyber Security

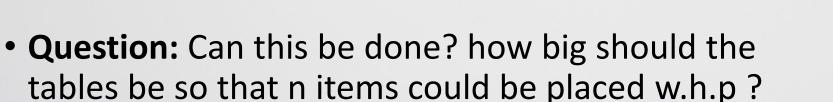
An Experimental Solution – 2D Cuckoo

- Alice and Bob each hold 4 tables, and the same 4 hash functions
- Alice: Places item in (T₁ and T₂) or (T₃ and T₄)
- **Bob:** Places item in $(T_1 \text{ and } T_3)$ or $(T_2 \text{ and } T_4)$

(the actual protocol is a bit different)

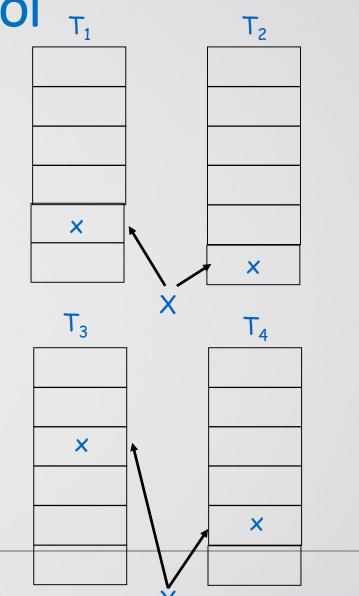
An Experimental Solution – 2D Cuckoo

- Like a quorum system
- If both parties have the same item then there is exactly one location in which both store it
- The circuit simply compares the item that Alice places in a bin to the item that Bob places in the same bin



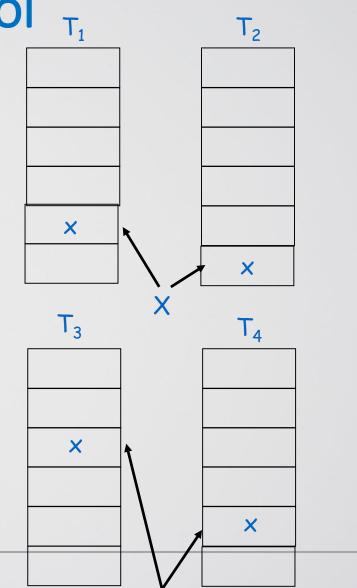
2D cuckoo hashing \Rightarrow O(n) protocol

- Invariant: Item in $(T_1 \text{ and } T_2)$ or $(T_3 \text{ and } T_4)$
- Theorem: n items could be placed maintaining the invariant w.h.p. if each table has > 2n buckets of size 1.
- Total of 8n buckets and 8n comparisons
- The stash adds 2sn comparisons (there are many protocol variants; stash size is the main differentiator)



2D cuckoo hashing \Rightarrow O(n) protocol

- Invariant: Item in $(T_1 \text{ and } T_2)$ or $(T_3 \text{ and } T_4)$
- Theorem: n items could be placed maintaining the invariant w.h.p. if each table has > 2n buckets of size 1.
- THM was proved using a new proof technique!
- The new proof can also prove known theorems about CH, as well as more general constructions
- BUT, we don't have (yet) an analysis for the size of the stash



An even better 2D Cuckoo variant

- Instead of 4 tables of size (2+ε)n, where each entry holds one item...
- Use 4 tables of size $(1+\varepsilon)n$, where each entry can store **two** items
- In simple CH it was shown (first experimentally and then theoretically) that storing two items in a bin reduces the overall size of the tables
- We don't know how to prove this for 2D CH
 - But we can check experimentally

Using Probabilistic Data Structures in Crypto

- E.g., hash tables, dictionaries, etc.
- We want the failure probability to be small (2⁻⁴⁰?, negligible in n?)
- Different levels of assurance
 - 1. There is an exact analysis of the failure probability (e.g., for collisions in a hash table or Bloom filter)
 - 2. There is an asymptotic analysis of the failure probability (e.g., for simple Cuckoo hashing)
 - 3. No analysis of the failure probability (e.g., 2D Cuckoo hashing with 2 items in each bin)

Using Probabilistic Data Structures in Crypto

- E.g., hash tables, dictionaries, etc.
- We want the failure probability to be small (2⁻⁴⁰?, negligible in n?)
- Different levels of assurance
 - 1. There is an exact analysis of the failure probability (e.g., for collisions in a hash table or Bloom filter)

- 2. There is an asymptotic analysis of the failure probability (e.g., for simple Cuckoo hashing)
- 3. No analysis of the failure probability (e.g., 2D Cuckoo hashing with 2 items in each bin)

Using Probabilistic Data Structures in Crypto

- E.g., hash tables, dictionaries, etc.
- We want the failure probability to be small (2⁻⁴⁰?, negligible in n?)
- Different levels of assurance
 - 1. There is an exact analysis of the failure probability (e.g., for collisions in a hash table or Bloom filter)
 - 2. There is an asymptotic analysis of the failure probability (e.g., for simple Cuckoo hashing)
 - No analysis of the failure probability (e.g., 2D Cuckoo hashing with 2 items in each bin)

Must use experiments to find exact parameters

Experiments

- How to verify a failure probability of 2⁻⁴⁰?
- We ran 2⁴⁰ experiments of hashing n items to 4 tables, where each table has 1.2.n entries of size 2
 - We used $n = 2^6, 2^8, 2^{10}, 2^{12}$
 - The # of times that a stash was needed (i.e., the failure probability) behaved as n⁻³. (Agreeing with a sketch of a theoretical analysis)
- Used about 2,230,000 core hours!
 - Possibly the largest hashing experiment per date?
- For n=2¹² the stash was needed only once (in experiment # 2^{39.15})
 - Giving a 99.9% confidence level that $p \le 2^{-37}$ for $n=2^{12}$.
 - Therefore for $2^{13} \le n$ we have 99.9% confidence that $p \le 2^{-40}$

Circuit size

Circuit size (# of AND gates) for sets of n=2²⁰ elements of length 32 bit each

Construction	Circuit size (AND	Normalized size	
Sorting network [HEKM12]	1,408,238,538	O(nlogn)	2.04
Cuckoo + simple hashing [PSSZ15]	688,258,388 O(nlo	g/loglogn)	1
2D Cuckoo with separate stashes	313,183,300	O(n)	0.45
2D Cuckoo with a combined stash	215,665,732	O(n)	0.31

Evaluation – run time

	LAN n=2 ¹⁶	LAN n=2 ²⁰	WAN n=2 ¹⁶	WAN n=2 ²⁰
DH/ECC PSI-CA [DGT12]	51,469	819,820	52,178	831,108
[PSSZ15]	15,322		177,245	
2D Cuckoo separate stashes	7,655	90,078	81,995	1,113,169
2D Cuckoo combined stash	6,046	64,258	63,369	761,318

- Run times (in msec) for computing the size of the intersection

- ECC PSI-CA is a Diffie-Hellman based protocol for computing size of the intersection

Evaluation

	LAN n=2 ¹⁶		LAN n=2 ²⁰		WAN n=2 ¹⁶	WAN n=2 ²⁰
DH/ECC PSI-CA [DGT12]	8.5	51,469	12.8	819,820	52,178	831,108
[PSSZ15]	2.53	15,322			177,245	
2D Cuckoo separate stashes	1.26	7,655	1.4	90,078	81,995	1,113,169
2D Cuckoo combined stash	1	6,046	1	64,258	63,369	761,318

Over a LAN, the new two-dimensional hashing protocols perform best

Contributions of the new protocol

- Asymptotically better: O(n) vs. O(nlogn/loglogn)
- Runs faster
- New analysis techniques for Cuckoo hashing

• Simplifies the usage of PSI

Conclusions

- PSI in an important and interesting primitive
- Research benefits from ideas from other subfields
- Most previous work was on simple two-party PSI
- New results:
 - Generic computation over PSI
 - PSI over outsourced data
 - Multi-party PSI

